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ABSTRACT

Calibration is a crucial step in hydrologic modeling that is typically handled by tuning parameters to match

an observed hydrograph. In this research, an alternative calibration scheme based on soil moisture was inves-

tigated as a means of identifying the potentially heterogeneous calibration needs of a distributed hydrologic

model. TheNationalWeather Service’s (NWS)HydrologyLaboratoryResearchDistributedHydrologicModel

(HL-RDHM) was employed to carry out such a calibration, along with concentrated in situ soil moisture ob-

servations from the Iowa Flood Studies (IFloodS) field campaign in Iowa’s Turkey River basin. Synthetic,

single-pixel experiments were conducted in order to identify parameters relevant to soil moisture dynamics and

to test the ability of three calibration procedures (discharge, soil moisture, and hybrid based) to recapture

prescribed parameter sets. It was found that three storage parameters of HL-RDHM could be consistently

identified using soil moisture RMSE as the objective function and that the addition of discharge-based cali-

bration led to more consistent parameter identification for all 11 storage and release parameters. Expanding to

full-basin experiments, these three calibration procedures were applied following an investigation to find the

most advantageous method of distributing the point-based calibrations carried out at each pixel collocated with

an IFloodS observation site. Amethod based on pixel similarity was deemedmost appropriate for this purpose.

Additionally, streamflow simulations calibrated with soil moisture showed improvement in RMSE and Nash–

Sutcliffe efficiency (NSE) for all calibration–validation events despite a short calibration period, a promising

result when considering calibration of ungauged basins. However, supplementary evaluation metrics show

mixed results for streamflow simulations, suggesting further investigation is required.

1. Introduction

For many years, calibration of hydrologic models has

been a crucial step in identifying parameters used to

represent mechanisms that are either poorly under-

stood, too computationally expensive to resolve, or even

unnecessary for a given application. Calibration of

hydrologic models has traditionally been performed by

adjusting model parameters such that the simulated

hydrograph best fits an observed hydrograph. This

framework is often limited in that the observed outlet

hydrograph is the result of a collection of many internal

basin processes (Ivanov et al. 2010; Liang and Xie 2001).

Several studies have pointed to soil moisture as a pos-

sible vehicle for describing these heterogeneous subbasin

processes, particularly in respect to how streamflow is

modulated (Santanello et al. 2007; Campo et al. 2006;

Wanders et al. 2014; Zamora et al. 2014). Some have

turned to other variables such as evapotranspiration

(Rientjes et al. 2013; Immerzeel and Droogers 2008; Cao
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et al. 2006), snow-covered area (Isenstein et al. 2015;

Franz and Karsten 2013), and nitrogen concentration

(Bergström et al. 2002) in lieu of, or as a compliment to,

calibrating to discharge. While significant progress has

been made from these studies, challenges still remain

regarding how best to leverage available observations for

calibration.

In an effort to accommodate the ever-growing need to

represent subbasin processes, the development of dis-

tributed hydrologic and land surface models (LSMs) has

become an area of great interest. Some of these models

are physically based, with a realistically meaningful

structure of soil layers. Such models include the Noah

land surface model (Chen et al. 1996) and the Soil–

Water–Atmosphere–Plant (SWAP) model (van Dam

et al. 1997). Others feature a more conceptual repre-

sentation of soil layers in the rainfall–runoff generation

process, such as theVariable Infiltration Capacitymodel

(VIC; Wood et al. 1992), NOAA/National Weather

Service (NWS) Hydrology Laboratory Research Dis-

tributed Hydrologic Model (HL-RDHM; Koren et al.

2004), the U.S. Army Corps of Engineers’ Gridded Sur-

face Subsurface Hydrologic Analysis model (Downer and

Ogden 2004), and the LISFLOODmodel (van der Knijff

et al. 2010). As they are distributed in nature, all of these

models have the opportunity to incorporate soil moisture

information to improve representation of internal basin

processes. Several studies have investigated use of soil

moisture observations in distributed models for this very

purpose (e.g., Das et al. 2008; Hsu et al. 2012; Wanders

et al. 2014). Thosemodels that are conceptually based and

rely on parameterizations of soil processes may also ben-

efit from soil moisture observations as a way to calibrate

those parameters that control subbasin mechanisms.

As the capabilities for observing soil moisture prog-

ress, the feasibility for use in the aforementioned dis-

tributed hydrologic models improves. Several in situ soil

moisture–monitoring networks have been providing lo-

cal soil moisture measurements for years. As part of the

Oklahoma Mesonet (Brock et al. 1995), soil moisture–

monitoring instruments have been deployed since 1996

(Scott et al. 2013). The NOAA Hydrometeorology

Testbed program has developed soil moisture observa-

tion networks in the Russian River and North Fork

American River basins in California as well as the San

Pedro River basin in Arizona (Zamora et al. 2011).

Since the 1990s, the U.S. Department of Agriculture

(USDA) Natural Resources Conservation Service has

hosted the Soil Climate Analysis Network (SCAN), a

continental-scale network with over 100 stations across

the United States (Schaefer et al. 2007). The Walnut

Gulch Experimental Watershed housed 19 near-surface

soil moisture measurement instruments from 2002 to

2006 in addition to a select few sites with deeper soil

profilemeasurements and longer record periods (Keefer

et al. 2008). Recent years have witnessed the extension

from ground-based observations to retrievals from sat-

ellites. The European Space Agency’s Soil Moisture

Ocean Salinity (SMOS) satellite mission was launched

in 2009 with the purpose of measuring sea surface sa-

linity over the world’s oceans and surface soil moisture

over land (Kerr et al. 2010). The recently launched Soil

Moisture Active Passive (SMAP) mission from the

National Aeronautics and Space Administration

(NASA) utilizes a passive L-band radiometer combined

with active L-band radar (Entekhabi et al. 2010). Dis-

tributed hydrologic modeling lends itself nicely to such

observations, as they can account for the subbasin soil

moisture variations. In support of the NASA Global

Precipitation Measurement (GPM) validation efforts,

the Iowa Flood Center (IFC) launched the Iowa Flood

Studies (IFloodS) field campaign in the spring of 2013.

As part of the comprehensive collection of hydromete-

orological instrumentation used for IFloodS, 20 soil

moisture probe sites were deployed in a catchment in

northeastern Iowa (Krajewski et al. 2013).While limited

in observation period length, these observations are rich

in terms of spatial density.

Utilization of soil moisture observations as a tool for

calibrating hydrologic models has been explored in

several studies. Wanders et al. (2014) propose the use of

satellite-based surface soil moisture observations in

conjunction with discharge observations in a dual state

or parameter estimation of the LISFLOOD model in

the upper Danube. This study found an improvement of

discharge simulations when both observations were used

for calibration over using discharge-only-based calibra-

tion and that there was the added benefit of improved

soil moisture simulation throughout the catchment.

Campo et al. (2006) use synthetic aperture radar data to

infer information about soil moisture at bare soil pixels

to use for calibration of the distributed hydrologicmodel

Mobile Digital Computer (MOBIDIC). Although re-

stricted to areas with little to no vegetation cover, results

of this work also demonstrate improvement in simulated

discharge with the addition of soil moisture–based cali-

bration. Studies using limited in situ observations for

basin calibration have found some improvement in dis-

charge simulations. Koren et al. (2008) explore the cal-

ibration of basin-average soil moisture for HL-RDHM.

Using daily, basin-average soil moisture calibration,

simulated discharge improvement was achieved by de-

fining an objective function that took into account the

root-mean-square error (RMSE) of outlet streamflow at

four different time scales combined with RMSE of two

soil moisture layers.
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In this study, using the NWS HL-RDHM, a distrib-

uted calibration approach based on soil moisture is de-

veloped. This approach allows the loosening of the

assumption in Koren et al. (2003) that states a priori

parameter gridcell values are correctly proportioned

relative to one another. This soil moisture–based calibra-

tion is tested alongside the traditional discharge-based

calibration, and a two-step hybrid scheme is introduced.

Pixel-scale synthetic studies are carried out to identify

appropriate parameters for soil moisture–based calibra-

tion and to evaluate performance under ideal conditions

(all inputs and outputs are known as well as the corre-

sponding parameter sets that produce them). These single-

pixel experiments are then expanded to the full-basin scale

for a basin that is included in the IFloodS experiment

domain. This study aims to 1) determine which HL-

RDHM parameters are most identifiable when calibrat-

ing to soil moisture, 2) test how to best spread calibration

information from isolated pixels to the full-basin scale so

that internal basin process representation is enhanced, and

3) examine if the inclusion of soil moisture observations in

the calibration process provides additional improvement

to streamflow simulations or if it can improve streamflow

simulations as a standalone under the circumstance that

streamflow observations are unavailable.

2. Model and methods

a. HL-RDHM description

HL-RDHM was developed by the NWS/Office of

HydrologicDevelopment (OHD).Detailed information

can be found in Koren et al. (2004), NWS (2011), and

Smith et al. (2012). HL-RDHM is a distributed hydro-

logic model that was designed and implemented for the

entire contiguous United States (CONUS) at three

spatial resolutions of 1 Hydrologic Rainfall Analysis

Project (HRAP;;4km), 1/2 HRAP, and 1/4 HRAP. HL-

RDHM structure can also be applied for any cell reso-

lution and time step length (NWS 2011). The heart of the

model is the Sacramento Soil Moisture Accounting

(SAC-SMA) with Heat Transfer Component (SAC-

HT). In SAC-HT, unlike other distributed models with

fixed values for subdomains or the entire domain, an

advanced algorithm was designed to derive a priori pa-

rameters from soil and land-use data. Recent enhance-

ments to the basic SAC-SMA model include the use of

Noah LSM–based physics to estimate a physically

meaningful soil moisture profile as well as evapotranspira-

tion from the soil column. This is accomplished through the

conversion of SAC-SMA conceptual soil water storages

into physical soil layers. Once this is done, a heat transfer

component accounting for frozen ground processes allows

the soil liquid and solid water contents at each soil layer

to be estimated (Koren et al. 2007).

Utilizing the Noah LSM vegetation–soil moisture in-

teraction parameterization as well as datasets regarding

vegetation activities, Koren et al. (2010) have further

adjusted SAC-HT soil moisture estimations at different

physical layers through advancing the evapotranspira-

tion (ET) estimation in SAC-HT by accounting for

the effects of photosynthetically active radiation, soil

moisture and vapor pressure deficits, and air tempera-

ture on ET. Empirical relationships are used to estimate

these additional variables in an effort to reduce input

data requirements to a level consistent with what is

available for River Forecast Center operations. This

new version is referred to as the SAC-HT for Enhanced

Evapotranspiration (SAC-HTET) and is included in

HL-RDHM, version 3.2.1 (used in this study). After the

soil moisture is adjusted at different physical layers, it is

shuffled backed to SAC-SMA conceptual layers (see

Fig. 1) where adjustments due to free water exchange

and removal from runoff are made.

An optional HL-RDHM routine that was utilized in

this study is the rutpix9 routing module. This module

has a hillslope component, where surface and subsurface

flows are routed over a uniform conceptual hillslope. In

the channel-routing component of rutpix9, water moves

from cell to cell according to a predefined cell connec-

tivity sequence. This sequence is topography based such

that at each cell, fast runoff routed over the hillslope of

that cell is combined with the subsurface flow and

streamflow routed from the upstream pixels (NWS 2011).

This study also employs the snow component in HL-

RDHMknown as SNOW17. This routine uses empirical

relationships to calculate heat storages, liquid water stor-

ages, and snowpack melt to represent snow accumulation

and ablation (Anderson 1973). Although all evaluation

periods of this study occur during springs and summers

FIG. 1. Example conversion of SAC-SMA conceptual storages to

model-prescribed physically meaningful soil layers (number of

layers varies from pixel to pixel).
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that are snow-free, the model spinup periods include the

preceding winters of each event in this research. No

parameters from the SNOW17 module were included in

the calibration process, as the focus of this study is to

investigate the potential of soil moisture. Because soil

water is likely to be frozen during the time periods when

SNOW17 would be activated, soil moisture evolution is

rendered unusable for calibration of the snow module

parameters in this research.

The 11 SAC-HTET storage and release parameters

and four rutpix9 routing parameters that are calibrated

for this study are presented in Table 1. The feasible

ranges for the storage and release parameters proposed

by Koren et al. (2008) are also provided in this table.

These ranges were used as bounds during calibration.

For all simulations, calibration or validation, a 1-yr spinup

period was used. The model was run at an hourly time

step, with a 1 HRAP spatial resolution (;4km).

b. Calibration scheme

Calibration of HL-RDHM was performed with the

global search algorithm, Shuffled Complex Evolution–

University of Arizona (SCE-UA; Duan et al. 1992). Use

of SCE-UA and its subsequent variations have been

extensively used in hydrologic modeling (Sorooshian

et al. 1993; Duan et al. 1994; Gan and Biftu 1996; Cooper

et al. 1997, 2007; Hogue et al. 2000, 2003; Vrugt et al.

2003b; Chu et al. 2010; Zhang et al. 2015). The notion of

multiobjective strategies for hydrologic modeling has

been highlighted in Gupta et al. (1998), Yapo et al.

(1998), Vrugt et al. (2003a), and Shafii and De Smedt

(2009), among others. These studies emphasize the need

to exploit as much useful information as possible from

observations rather than relying on a single objective.

This can be in the form of calibrating to multiple vari-

ables, or calibrating to multiple signals of the same vari-

able. With this in mind, the calibration scheme here

focuses on soil moisture and discharge as the two cali-

bration variables. For the soil moisture–based calibration

of this work, SCE-UA was applied at the single-model

pixel scale, wherever in situ soil moisture observations

were available. The objective function tominimize in this

case was the combined RMSE of four observed soil

moisture layers. For discharge-based calibration in this

study, the objective function that SCE-UA sought to

minimize was the RMSE of simulated discharge.

Hogue et al. (2000, 2003) introduced an automatic

calibration scheme for the lumped version of SAC-SMA

and SNOW17 that was designed to mimic the manual

calibration approach of NWS. This method featured two

objective functions used in successive calibration, with

each objective function targeting specific parameters

(i.e., baseflow parameters with one objective function,

upper-zone parameters with the second). Franz and

Karsten (2013) explore a multistep calibration process

that targets parameters in the SNOW17 model where

three parameters are first optimized to snow-covered

area followed by an additional parameter being opti-

mized via streamflow observations and simulations from

the lumped SAC-SMA. The work presented here simi-

larly explores stepwise calibration of a watershed that

focuses on relevant parameters by following the exam-

ple of Franz and Karsten (2013) of targeting certain

parameter groups with different variables. Soil mois-

ture observations from the IFloodS experiment are

used to calibrate a specific parameter group followed

by discharge-based calibration of the remaining pa-

rameters. The effects of only using soil moisture–based

TABLE 1. HL-RDHM parameters considered for calibration and feasible ranges as provided by Koren et al. (2008).

Parameter Description Range

SAC-HTET

UZTWM Upper-zone tension water max (mm) 10–300

UZFWM Upper-zone free water max (mm) 5–150

UZK Upper-zone free water depletion rate due to interflow (day21) 0.10–0.75

ZPERC Max and min percolation rate ratio 5–350

REXP Percolation curve shape parameter 1–5

LZTWM Lower-zone tension water max (mm) 10–500

LZFSM Lower-zone supplemental free water max (mm) 5–400

LZFPM Lower-zone primary free water max (mm) 10–1000

LZSK Lower-zone supplemental free water depletion rate due to interflow (day21) 0.01–0.35

LZPK Lower-zone primary free water depletion rate due to interflow (day21) 0.001–0.05

PFREE Fraction of percolated water that goes straight to lower-zone free storage 0.0–0.8

rutpix9

Q0CHN Channel specific discharge (m s21)

QMCHN Power value for discharge cross-sectional relationship

ROUGH Hillslope roughness coefficient

SLOPH Hillslope slope
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calibration and discharge-only-based calibration are

also investigated.

The framework for the soil moisture–based calibra-

tion of this study relies on calibrating single pixels within

the distributed model domain, but dispersing the cali-

bration to the rest of the model pixels. To apply pa-

rameter adjustment of the individually calibrated

parameters to the rest of the pixels in the basin, three

different distribution schemes were investigated:

d Inverse distance weighting (InvDist): Inverse distance

weighting of parameters was used to distribute cali-

brated values to neighboring pixels according to phys-

ical proximity. Weights for InvDist are calculated as

w
i
(x)5

1

d(x, x
i
)p

d(x, x
i
)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

j51

(x
j
2 x

ij
)2

s , (1)

where wi is the weight of the ith calibrated pixel given

to the unknown pixel x, based on the distance d,

between pixel x and calibrated pixel xi, and p is the

power parameter (chosen as 2 for this study). Param-

eter values are then assigned to pixel x as

u(x)5

8>>>>>>><
>>>>>>>:

�
N

i51

w
i
(x)u(x

i
)

�
N

i51

w
i
(x)

if d(x, x
i
) 6¼ 0

u(x
i
) if d(x, x

i
)5 0

, (2)

where u(x) is a vector of parameters at pixel x and

u(xi) is a vector of parameters at calibrated pixel xi.

d Similarity of pixels weighting (SimPix): SimPix is a

distribution method based on the similarity of pixel

characteristics and was created following the InvDist

method with the exception that the distance is now

defined as the Euclidean distance in parameter space

rather than in 2D physical space:

d(u0
x, u

0
xi
)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
m

k51

 
u
xk
2 u0

xik

u
kMAX

2 u
kMIN

!2
vuut , (3)

where u0
x is the uncalibrated parameter vector at pixel

x, u0
xi
is the uncalibrated parameter vector at calibrated

pixel xi, and ukMAX
and ukMIN

are the maximum and

minimum value of the kth parameter, respectively.

The (ukMAX
2 ukMIN

) term is a necessary regularization

provision that prevents the magnitude of a given

parameter from dominating the similarity measure.

This method was developed using the a priori param-

eter grids provided by the NWS as the metric of

similarity, given that these parameter grids are derived

from soil surveys (Koren et al. 2003). It is assumed that

if a specific pixel requires calibration, those pixels that

are physically similar according to the a priori param-

eters will need to be calibrated similarly. This has the

potential advantage over the InvDistmethod in that the

unobservable pixels do not need to be in the near

vicinity of the observable pixels and that a landscape

with drastically changing soil characteristics in space

will not become smoothed by the InvDist process.

d Basic average of scalar multipliers (BaseAve): The

BaseAve method follows the same assumptions as the

original calibration method outlined in NWS (2011).

In this method, scalar multipliers are identified and

applied to the a priori parameter grids while presuppos-

ing that the spatial relationship of the parameters is

correct and that only their average magnitude requires

adjustment. To identify basin multipliers in this study, a

multiplier is calculated for each parameter at every

observation station pixel, and the average of the multi-

pliers is taken and applied to the original grids basin-

wide. Like its discharge-based calibration counterpart

that is traditionally used and is discussed in NWS (2011),

this distribution method will see no changes in the

description of basin heterogeneity beyond what has

already been established in the a priori parameter grids.

c. Performance metrics

The model was evaluated using five metrics: RMSE,

bias, correlation (CORR), coefficient of determination R2,

and Nash–Sutcliffe efficiency (NSE). RMSE is defined by

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

t51

[o(t)2 s(t)]2

s
, (4)

where n is the total number of observations, o is the

observed variable, and s is the corresponding simulated

variable for each time step t (t 5 1 h for all cases in

this study).

Bias indicates the tendency of the simulated soil

moisture and streamflow in comparison with observa-

tions. The ideal value of bias is zero. Positive values of

bias indicate a tendency to overestimate while negative

values indicate an underestimation:

bias5
�
n

t51

[s(t)2 o(t)]

�
n

t51

o(t)

. (5)
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CORR is one of the most commonly used measures for

evaluating the goodness of fit of simulated and observed

time series data arrays. CORR ranges from 21 (per-

fectly negatively correlated) to 1 (perfectly positively

correlated). The ideal value of CORR is 1 and CORR of

0 indicates no correlation between the simulation and

observation:

CORR5
�
n

t51

[o(t)2 o]�
n

t51

[s(t)2 s]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

t51

[o(t)2 o]2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

t51

[s(t)2 s]2

s . (6)

Coefficient of determination indicates how well

measured data fit a statistical model. The R2 ranges

from 0 to 1, with acceptable values greater than 0.5

(Moriasi et al. 2007). It is calculated as the square of

the CORR.

NSE is a commonly used metric in hydrologic mod-

eling, which indicates the fitness of the simulated dis-

charge with the observed hydrograph. NSE ranges

from2‘ to 1. The ideal value of NSE is 1. Negative NSE

indicates that the simulated value is worse than the

mean of the observations:

NSE5 12
�
n

t51

[s(t)2 o(t)]2

�
n

t51

[o(t)2 o]2
. (7)

3. Study area and data

a. Study area

The Turkey River (Fig. 2) is a 246-km tributary of the

upper Mississippi River covering a drainage area of

4384km2 in Iowa. The region is composed primarily of

nonirrigated farmland (corn and soybeans). Northeast-

ern Iowa, where the Turkey River basin is located, hosts

an area characterized by a karstic and high-relief land-

scape. These complex systems allow for the rapid

transmission of groundwater through broken rocks,

eventually leading to steeply banked streams through

seeps and springs (Libra 2005). While the conceptual

rainfall–runoff scheme does not explicitly represent a

water table, the lower zone incorporates the saturated

zone (Brazil and Hudlow 1981), which may be influ-

enced by the karst formations. The sinkholes that

pepper this region allow surface runoff to directly

infiltrate to the water table (Libra 2005). This partic-

ular geological formation is not directly accounted for

in HL-RDHM and adds a unique complication to the

experiment, particularly in the southeastern region of

the basin, where there is a concentration of known

sinkholes.

The IFloodS campaign was carried out as a ground

validation component of the GPM project (Krajewski

et al. 2013; Demir et al. 2015; Schwaller andMorris 2011;

Tapiador et al. 2012). IFloodS provided multiple real-

time observed hydrometeorological data during spring

of 2013 from tipping-bucket rain gauges, weather radars,

streamflow and stage gauges, and soil moisture probes.

The campaign provides a unique opportunity for hy-

drologic modeling studies using high-quality data from

the dense observation network.

b. Data

The two primary data components required for this

study were soil moisture and discharge. The soil mois-

ture data used are from the IFloodS field campaign.

These data are available at 5-, 10-, 20-, and 50-cm depths

at 20 in situ locations throughout the Turkey River basin

during the spring of 2013. Figure 3 depicts the layout of

FIG. 2. (left) Turkey River basin and Iowa’s karstic regions. (right) Topography of Turkey

River basin derived from 30-m DEM.
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the IFloodS soil moisture network. Station soil moisture

time series were averaged from 15min to hourly obser-

vations for use in this study. Basin outlet discharge data

used were from the USGS streamflow gauge number

05412500 at Garber, Iowa. These too were averaged from

15min to hourly data to remain consistent with model

simulations. All nonsynthetic experiments for calibration

and soil moisture–based validation in this study are set up

from 24April to 24 June 2013, a time period in which data

are available from the IFloodS campaign.

HL-RDHM requires two types of forcing data: pre-

cipitation and temperature. This research used the Na-

tional Centers for Environmental Prediction (NCEP)

NEXRAD stage IV rainfall data derived from multiple

sensors (gauges and radars) over the CONUS. The re-

analysis air temperature from phase 2 of the North

American Land Data Assimilation System (NLDAS-2)

available from NASA Goddard Earth Sciences Data

and Information Services Center (GES DISC) was also

used. Both forcing data are in 4-km, hourly, spatiotem-

poral resolution.

This study also makes use of data from the NWS Co-

operative Observer (COOP) program. The NWS COOP

is made of a network of over 7000 volunteer climate data

observers in addition to the hundreds of NWS stations.

These sites record daily maximum and minimum tem-

peratures as well as precipitation to aid in the study of

various climate phenomena in the United States

(Robinson 1990). Daily precipitation from theCOOP site

OELWEIN-2-S (Fig. 3) in northeastern Iowawas utilized

in the synthetic study design (described in the following

section).

4. Synthetic single-pixel experiment

a. Synthetic single-pixel experiment setup

To evaluate the suitability of using soil moisture data

to identify parameters in HL-RDHM, single-pixel syn-

thetic studies were conducted. Use of a single pixel re-

duces the complexity of a fully distributed basin and

allows for a simple, ideal case representation of the

larger experiment. These single-pixel experiments were

carried out in two phases: 1) a sensitivity analysis of all

parameters plausibly relevant to soil moisture and 2) a

series of scenarios that test the ability to retrieve a

prescribed parameter set.

A model pixel located near the Turkey River basin

extent was selected for the synthetic experiments. Within

this pixel is the NWS COOP site OELWEIN-2-S, which

has a data record that dates back to 1951. Climate data

from this site were used to design 2-month-long synthetic

precipitation patterns of varying intensity. The temporal

pattern was taken as the basin average of the May–June

2005 precipitation stage IV hourly estimates. This pattern

was linearly scaled such that the total precipitation equals

the minimum, median, and high May–June precipitation

totals from the COOP site. NLDAS-2 temperatures from

the same 2005 time period that the precipitation was

based on were used to force the model in all three sce-

narios. The a priori parameter values from the NWS at

this pixel were taken as the prescribed true parameters.

This was done to ensure a realistic combination of the

parameters, as several studies have demonstrated rea-

sonable simulations using the a priori parameter sets

(e.g., Nguyen et al. 2015; Fares et al. 2014). It should be

emphasized that calibration of HL-RHDM parameters

in the upper Midwest has been shown to substantially

improve simulation results (Spies et al. 2015), and that

use of the a priori sets for this synthetic study is simply to

provide a plausible mixture of parameters. The model

was run using the a priori parameters, and the resulting

simulated soil moisture at the four observable layers of

the IFloodS instruments and simulated pixel discharge

were used as ‘‘perfect observations’’ to complete the ideal

case experiments.

b. Synthetic single-pixel experiment results

1) SENSITIVITY ANALYSIS

Each of the 11 SAC-HTET parameters related to

storage and release were perturbed one at a time to

evaluate individual effects on soil moisture and dis-

charge (at the single-pixel scale). The entire plausi-

ble range for each parameter as provided in Koren

et al. (2008) was explored (see Table 1). The median

precipitation scenario described in the previous

FIG. 3. IFloodS network of in situ soil moisture observations

(squares) in the Turkey River basin and the NWS COOP site

OELWEIN-2-S (circle).
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section was used to drive the model. An example

conceptualization of how the in situ observations in

this study relate to the model parameters is provided

in Fig. 4. Although the exact relationship will vary

from pixel to pixel, this example shows the

parameter–soil layer relationship of the synthetic

experiment pixel, which provides an idea of how

parameters of pixels in the Turkey River basin are

related to the IFloodS soil moisture observation

layers. The model defines its own layers for internal

calculations while offering the user the ability to re-

quest specific layers, which are interpolated from the

model-defined soil layers.

Figure 5 qualitatively shows the sensitivity of simu-

lated soil moisture at the four observable soil layers for

the IFloodS campaign. Of the 11 parameters, the storage

parameters (UZTWM, UZFWM, LZTWM, LZFSM,

and LZFPM; see Table 1 for definitions) exhibit sensi-

tivity in the simulated soil moisture at all four layers,

as seen as a spread in the soil moisture estimate with

changing parameter values. The three free water

storage parameters show lower soil moisture esti-

mates when lower parameter values are used, and the

two tension water storage parameters show higher

soil moisture estimates at the lower end of the pa-

rameter spectrum. UZFWM displays the highest

sensitivity for the lower parameter values, whereas the

other four storage parameters are more sensitive in the

higher range.

Sensitivity of discharge response to changing the

same suite of parameters was also examined (Fig. 6).

For this experiment, single-pixel runoff is considered

to be ‘‘discharge,’’ as there is no channel flow or

routing during this step. Unlike the soil moisture sig-

nature, discharge exhibits some degree of sensitivity to

all of the parameters under consideration. This figure

demonstrates the potential complications of changing

several SAC-HTET parameters simultaneously while

using the discharge pattern as the evaluation tool for

pursuing the ‘‘true’’ parameter values. For example, the

discharge has an exceptionally similar response to the

range of possible values for LZTWM, LZSK, and

LZPK. The response for changing UZK also has the

same shape, but opposite effect with changing parame-

ter magnitude. It follows that there may not be sufficient

information to adjust certain observed hydrograph be-

haviors via the proper parameter during discharge-

based calibration.

2) PARAMETER IDENTIFICATION TESTS

To test the ability to recapture predefined param-

eter values at the pixel scale, SCE-UA calibration

was implemented 15 separate times (five times for

each of the three different precipitation intensity

patterns). This was done for three cases, each defined

by a different objective function. All 11 storage and

release parameters were allowed to be calibrated,

and it was assumed that no prior information of the

parameters was available so that the entire parameter

space defined by the bounds in Table 1 can be

explored.

For the first case, RMSE of the four observable soil

moisture layers was used as the targeted objective

function to minimize. Figure 7 shows the results of this

soil moisture–based calibration in the normalized pa-

rameter space (gray markers). The results show that

UZTWM,UZFWM, and LZTWMarewell identified by

soil moisture calibration when forced with any of the

three precipitation intensities. The lower-zone free

storage parameters (LZFSM and LZFPM) showed

amoderate spread in estimated parameter location from

the 15 trials, and the remainder of the parameters

showed a large spread, suggesting soil moisture–based

calibration may be unreliable in their identification. The

next case followed the same setup as the first, with the

exception of utilizing discharge RMSE for the objective

function. This scenario shows some degree of spread in

estimated parameters for all cases. However, it can be

seen that for the highest precipitation intensity trials,

FIG. 4. Sample (pixel at NWS COOP site OELWEIN-2-S)

connection between the SAC-SMA conceptual storage parame-

ters, model-defined soil layers, and user-defined soil layers. Light

shades correspond to the upper-zone conceptual storages, dark

shades to lower-zone storages, and the medium shade lies in both.
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FIG. 5. Soil moisture sensitivity at the four IFloodS sensor depths to individually changed parameters at the single-pixel scale.
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FIG. 6. Discharge sensitivity to individually changed parameters at the single-pixel scale.
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UZK and UZTWM are consistently identified as being

close to the true value. Givenmany intense precipitation

events, UZTWM will likely reach its capacity multiple

times, allowing for its identification, and since UZK

controls the release of quick flow, it too has the neces-

sary conditions for identification. Complementing the

rationale ofHogue et al. (2000, 2003), who used low-flow

hydrograph segments to calibrate lower-zone parame-

ters, is the precise identification of LZFPM, LZFSM,

and LZPK during low precipitation intensity trials. The

results of these first two trials are consistent with the

findings of Wanders et al. (2014), who found that

FIG. 7. Parameter identification tests using synthetic data for a single pixel with discharge-based (orange), soil moisture–based (gray), and

hybrid (purple) calibration schemes.
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discharge-based calibration was most useful for identi-

fying parameters related to groundwater and routing

whereas soil moisture–based calibration had the most pos-

itive effect on parameters related to land surface processes.

A similar connection is apparent in this experiment with

the relationship that soil moisture observations have to

surficial processes and ET, as represented by the upper-

zone and tension water storages, respectively. Further-

more, the discharge observations are able to provide

information on groundwater and flow timing, as regulated

by the lower-zone and release parameters.

The final calibration case features a two-step hybrid

scheme that attempts to combine the strengths of each of

the first two cases. Step one is simply case one, where all 11

parameters are allowed to be calibrated to find the lowest

soil moisture RMSE. In step two, those parameters that are

clearly and consistently identified by soil moisture calibra-

tion (i.e., UZTWM, UZFWM, and LZTWM) are held

constant and the remaining eight parameters are allowed to

be calibrated according to discharge RMSE (purple

markers in Fig. 7). Compared to the first two cases, the

hybrid scheme is able to more accurately and precisely

identify the prescribed true parameter values with the ex-

ception of PFREE and low intensity precipitation forcing

trials for UZK, REXP, and ZPERC.

5. Full-basin tests

a. Calibration distribution soil moisture analysis

The 20 HL-RDHM pixels collocated with the soil

moisture observations were individually calibrated us-

ing SCE-UA. Figure 8 highlights the simulated soil

moisture time series statistics before and after each pixel

was calibrated. Average improvement in RMSE over a

priori values after calibration is 33% with a range of

0%–71%. Improvement in bias, CORR, and R2 is also

seen for nearly all of the observation sites. All sites show

an improvement of NSE over the uncalibrated simula-

tions, although 8 of the 20 stations maintain a negative

NSE value after calibration, which is unsatisfactory for

this metric.

FIG. 8. Statistics of simulated soil moisture at the 20 IFloodS sites before and after individual

calibration.
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Extending the single-pixel calibration schemes out-

lined in the previous section to the full-basin scale first

requires interpolation of the calibration at the pixels

collocated with soil moisture observations to the remain-

ing pixels. Simulations using parameter sets derived from

the three distributionmethods outlined in section 2b were

tested using the IFloodS soil moisture sites. To evaluate

soil moisture simulation performance, calibrated pa-

rameters from 10 of the sites were used for distribution

while the remaining 10 sites were reserved for valida-

tion. The observations were distributed to the full-

basin scale through inverse distance weighting, which

makes it necessary to divide the stations for the two

purposes, as the segregation alleviates any advantage

the InvDist method would gain from having a weight

scheme corresponding perfectly with observation loca-

tion. In addition to soil moisture simulations from the

three soil-moisture-calibration-based schemes, simulated

soil moisture using a priori parameters (UnCal) as well as

the simulation results using discharge-only-based cali-

bration (AutoCal) were evaluated.

The pixel-based RMSE for each of the five simula-

tions is highlighted in Fig. 9 along with a configuration of

which sites were used for calibration–validation and an

average RMSE of the 10 validation station simulations

under each calibration scheme. The RMSE values

presented represent an RMSE of the four soil mois-

ture layers concatenated together into one time

series. Of the three soil moisture–based calibration

experiments, the SimPix configuration showed the

best performance in terms of RMSE (Fig. 10). The

central part of the basin exhibits a slight degradation

for the SimPix RMSE compared to the UnCal run,

but the high RMSE in the southeastern portion of the

basin seen in the UnCal simulation experienced the

greatest reduction for the SimPix run. The InvDist

method showed some degradation in the western

basin while the AutoCal and BaseAve simulations

had higher RMSE in the northwestern portion of the

basin compared to the UnCal simulation with a slight

RMSE reduction in the southeastern region. Con-

sidering the collection of 10 validation pixels that are

collocated with observations and are not subject to a

possibly flawed form of observation interpolation,

the SimPix method has the lowest RMSE at five out

of the 10 station pixels and has the lowest average

RMSE of the five methods tested.

b. Full-basin-calibration streamflow analysis

Based on the results from the calibration distribution

tests in section 5a, the SimPix method was selected as

the most suitable means for representing a distributed

calibration through soil moisture. Therefore, the pa-

rameter grids for UZTWM, UZFWM, and LZTWM

derived from the SimPix scheme were held constant

and the remaining parameters were calibrated using

discharge and SCE-UA to form the hybrid calibration

scheme. This time, all 20 calibrated pixels were used in

the parameter distribution to maximize the potential

benefit of the soil moisture calibration. For both the

discharge-based and hybrid calibration methods,

routing parameters were now allowed to be adjusted

during the SCE-UA process.

Figure 11 shows the streamflow simulation results

during the analysis period that follows the 1-yr spinup

for the various calibration methods. In addition to the

discharge-based and hybrid methods, the a priori (de-

fault) parameters and calibration using only soil moisture

were evaluated. The most notable improvement over

the a priori simulation exhibited by the other three sim-

ulations is in the reduction of bias (Table 2). The

discharge-based, soil moisture–based, and hybrid cali-

bration simulations resulted in a 79%, 45%, and 59%

bias reduction, respectively. It is worth noting, how-

ever, that all calibrated simulations now underestimate

larger peaks while overestimating lower flows for most

FIG. 9. (left) Soil moisture RMSE at the 10 IFloodS sites used for validation. (right) Map of

stations used for soil moisture calibration and validation.
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of the evaluation period. Marked improvement in hy-

drographRMSE also resulted from all three calibration

efforts with a 42%, 28%, and 35%RMSE reduction for

the discharge-based, soil moisture–based, and hybrid

calibration simulations, respectively. In terms of the

RMSE performance of each simulation relative to one

another, the discharge-based calibration showed the

greatest improvement over the uncalibrated run, fol-

lowed by the hybrid calibration scheme, then the soil

moisture–based calibration simulation. This pattern of

improvement follows the degree of freedom each cal-

ibration scheme has compared to the others. An in-

crease in CORR and R2 for the discharge-based and

hybrid calibration methods is shown, with the soil

moisture–based calibration method CORR and R2

being nearly equal to that of the simulation with default

parameter sets. These results are aligned with the fact

that the soil moisture–based calibration method does not

address any routing parameters and thus does not have

the freedom to adjust hydrograph features such as peak

timing like the discharge-based and hybrid schemes. The

NSE of all calibrated simulations improved over the un-

calibrated simulation, going from no predictive skill

(negativeNSE) to 0.49, 0.23, and 0.37 for discharge based,

soil moisture based, and hybrid, respectively.

6. Validation via streamflow

Validation by means of streamflow was done to sup-

plement the lack of soil moisture observations and to

also investigate how each calibration process translates

to other parts of the water cycle besides soil moisture.

The three wet late spring to early summer events for the

Turkey River basin used include from 1 April to 10 June

2009, 1 June to 30 July 2010, and 5 April to 5 July 2014

(Fig. 12). In terms of observed hydrographs, the 2009

FIG. 10. Distributed basin soil moisture RMSE using 10 IFloodS stations for calibration and 10

for validation.

TABLE 2. Statistics of simulated streamflow for the IFloodS period

used for calibration.

Calibration method

RMSE

(m3 s21) Bias CORR R2 NSE

April–June 2013

Default (uncalibrated) 136.14 0.73 0.71 0.51 20.50

Discharge based 79.22 0.15 0.82 0.67 0.49

Soil moisture based 97.91 0.40 0.70 0.49 0.23

Hybrid 88.62 0.30 0.77 0.59 0.37
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event featured a peak smaller than the magnitude of

the calibration period peaks, and the 2010 and 2014

events showed peaks roughly equal to the calibration

period.

The simulations calibrated with soil moisture showed

an 8%–16% reduction in RMSE and the hybrid simu-

lations had an 8%–15% RMSE reduction (Table 3).

For the discharge-based calibrated simulations, the

RMSE shows an increase from the uncalibrated run for

the 2010 event, but a 44% and 18% reduction for 2009

and 2014, respectively. No consistent bias reduction

was achieved for any of the three calibration schemes.

Correlations remained high for all three validation

events and for all simulations calibrated or not (values

ranged from 0.84 to 0.98) and R2 values followed suit

(values from 0.70 to 0.96). Gains from calibration over

the uncalibrated run in terms of NSE were mostly

positive save the discharge-based scheme for the 2010

event. As all calibration efforts were based on RMSE,

the improvement seen over the a priori set is antici-

pated in this metric. Not one calibration method can

be classified as ‘‘superior’’ to the others in terms of

streamflow simulation given the validation statistics,

and in fact, the uncalibrated simulations show the best

statistics in some instances.

7. Discussion and conclusions

In this research, the use of concentrated in situ soil

moisture observations for calibration of a distributed

hydrologic model was investigated through the aid of

data from the soil moisture network of the IFloodS field

campaign. Calibration of HL-RDHM pixels collocated

with the IFloodS soil moisture sensors was performed

using the SCE-UA global search algorithm.

A suite of synthetic single-pixel experiments was

carried out in order to 1) identify which conceptual

parameters had the greatest impact on physically

meaningful soil moisture and 2) establish with what

procedures (if any) can prescribed conceptual param-

eters be retrieved using SCE-UA when forced with

‘‘perfect’’ precipitation and temperature and given

‘‘perfect’’ observations. Through a sensitivity analysis

of the 11 storage and release parameters, it was found

that simulated soil moisture estimates at the four ob-

servable physical soil layers were sensitive to changes

of storages parameters (UZTWM, UZFWM, LZTWM,

LZFPM, and LZFSM), whereas discharge showed

some degree of sensitivity to changes in all storage and

release parameters.

It was found that UZTWM, UZFWM, and LZTWM

could be consistently and precisely identified in the ideal

synthetic case using soil moistureRMSE as the objective

function. The choice of objective function plays a role

in which parameters were more identifiable. Because

RMSE targets overall error, adjusting the storage pa-

rameters will be most effective in its reduction. It is

anticipated that calibrating to an objective function that

takes into account how the soil moisture signature is

changing (i.e., CORR or NSE) would have more of an

impact on some of the release parameters. The identi-

fiability of these three parameters over the others also

arises due in part to the location of the observations.

With the top three observation layers within the upper

zone, there are three time series providing information

related to UTZWM and UZFWM. There is some in-

formation available to account for LZTWM, with the

deepest observation layer representing an area of the

soil column between the upper and lower zones. It is

likely that had the deepest observation layer not fallen

FIG. 11. USGS observed discharge and model results for the 2013 IFloodS period used for

calibration with basin-average hourly precipitation from stage IV.
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partly in the area reserved for the lower zone, LZTWM

may not have been as easily identified. This should be

taken into consideration if only shallow observations are

available. The development of the two-step hybrid cal-

ibration process led to more consistent parameter

identification for all 11 storage and release parameters

compared to calibration based solely on soil moisture or

discharge.

This work also evaluated the ability of soil moisture–

based calibrated simulations to capture streamflow

patterns at the full-basin scale. Several advantages of

using soil moisture for calibration emerge from this ex-

periment. Soil moisture–based calibration consistently

showed improvement in simulated discharge RMSE for

both calibration and validation experiments. As the soil

moisture calibration had no connection to routing pa-

rameters, peak timing could not be improved, but peak

magnitude was improved in most cases. Additionally,

the realized reduction in streamflow RMSE for soil

moisture–based calibrated simulations was achieved

even with a calibration time period that is a fraction of

what has been deemed necessary for stability when

calibrating with streamflow. Given that calibration was

performed for a single, multimonth time period, events

for validation through streamflow were selected to be

similar to conditions during the IFloodS campaign.

Yapo et al. (1996) conclude that approximately 8 years

of observed streamflow are required for a relatively

stable calibration. However, to satisfy the goal to cali-

brate within the limited time frame of the IFloodS

campaign for both the soil moisture and the streamflow-

based schemes, this recommendation is unattainable.

Wet late spring to early summer events (similar to

IFloodS conditions) of three other years were selected

for validation in an effort to compensate for the lack in

the observation record. It is acknowledged that to ex-

pect high model performance, especially from the cali-

bration schemes involving discharge, is unreasonable for

conditions too dissimilar to the short calibration period.

While much more investigation is needed, it may be so

that less time is required to find stable parameters when

calibrating with soil moisture. Given observations with a

longer time period, it would be worth following the ex-

ample of Yapo et al. (1996) to test what kind of cali-

bration time length is required for soil moisture–based

calibration. This would provide a more thorough ac-

count of how the dual calibration of soil moisture and

streamflow can be merged together.

Even though RMSE was reduced for nearly all of the

calibration–validation period calibrated streamflow

simulations, the overall performance in terms of cap-

turing streamflow patterns begs the question of whether

or not any one (or any) of the calibration methods can

be considered satisfactory. It is certainly worth ex-

ploring whether or not extending the streamflow cali-

bration period can enhance performance within the

scope of the other evaluation metrics (particularly for

the discharge-based and hybrid calibration schemes).

Furthermore, this study focuses strictly on the mini-

mization of RMSE during calibration, which puts em-

phasis on reducing magnitude of errors over matching

hydrograph evolution. It is possible that a multivari-

able, multiobjective approach that takes into account

the shape of the observed hydrograph compared to the

simulation (NSE, for example) could enhance the

performance of the streamflow simulated with cali-

brated parameters. While it is not clear from this ex-

periment that soil moisture–based or hybrid calibration

of HL-RDHM can greatly enhance streamflow pre-

diction, the added information provided by soil moisture

in the calibration process improves soil moisture esti-

mates in a distributed sense rather than scalar im-

provement of the basin average. Individual pixel

calibration had an average improvement of 33% re-

duction of RMSE. This feature allows for adjustment in

the representation of basin heterogeneity if needed,

which is a feat that discharge-only-based calibration is

unable to achieve. Other studies have shown improve-

ment in streamflow simulation using soil moisture for

calibration (i.e., Campo et al. 2006;Wanders et al. 2014),

so this objective appears obtainable through additional

exploration.

When considering the possibilities of calibrating

ungauged basins or those with limited observations, soil

moisture–based calibration becomes an attractive op-

tion. This is especially relevant with the availability of

global soil moisture observations through satellite-based

TABLE 3. Statistics of simulated streamflow for the three

validation events.

Calibration method

RMSE

(m3 s21) Bias CORR R2 NSE

From 1 Apr to 10 Jun 2009

Default (uncalibrated) 41.08 0.46 0.87 0.75 0.01

Discharge based 22.94 0.39 0.98 0.96 0.69

Soil moisture based 37.59 0.58 0.84 0.70 0.17

Hybrid 37.62 0.68 0.95 0.90 0.17

From 1 Jun to 20 Jul 2010

Default (uncalibrated) 59.89 20.01 0.90 0.82 0.63

Discharge based 69.46 20.40 0.88 0.78 0.50

Soil moisture based 50.23 20.01 0.87 0.75 0.74

Hybrid 55.19 20.11 0.86 0.75 0.68

From 5 Apr to 5 Jun 2014

Default (uncalibrated) 73.98 0.53 0.95 0.91 0.52

Discharge based 60.56 0.19 0.87 0.76 0.68

Soil moisture based 64.34 0.53 0.95 0.89 0.63

Hybrid 63.15 0.49 0.93 0.87 0.65
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FIG. 12. USGS observed discharge andmodel results for three validation events (from top to bottom: 2009,

2010, and 2014) with basin-average hourly precipitation from stage IV.
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estimates such as SMAP and SMOS. However, when

considering satellite-retrieved soil moisture, certain ad-

aptations may be necessary because only the top-layer

soil moisture is available (which may reduce meaningful

connection to LZTWM) and that the temporal resolution

is on the daily to multiday scale rather than hourly.

The complex geology and topography of the basin

itself presents a unique challenge in the context of this

experiment. High soil moisture RMSE values in the

southeastern part of the Turkey River basin (Fig. 10)

reveal themselves in a pattern that coincides well with

the highly karstic areas highlighted in Fig. 2. Currently,

HL-RDHM is not formulated to directly take into

account the effect that these types of formations have.

It is possible that having distributed observations such

as soil moisture to calibrated can help separate out

problematic areas and define proper parameter values,

at least in areas that are less karstic and that conform to

the type of processes HL-RDHM can handle. This is

opposed to the alternative of trying to distinguish what

portion of the hydrograph behavior is attributed to the

karstic regions.

Several conclusions can be drawn from this study.

Synthetic experiments fed with perfect observations

revealed that three storage parameters were strongly

identifiable through soil moisture calibration and that all

11 parameters were more recoverable when used in a

two-step hybrid calibration with observed discharge

than calibration to either variable individually. Of the

three calibration distribution methods, it was found

that the SimPix method, defined on the principle of a

given uncalibrated pixel’s similarity to the calibrated

pixels, was the most appropriate for use in distributing

the calibration effects. The inclusion of soil moisture

observations in the calibration process was able to

consistently reduceRMSE and increase NSE of simulated

streamflow, which discharge-based calibration could not

do given such a short calibration period. However, the

mixed results of other evaluation metrics suggest that

more investigation is needed before soil moisture–based

calibration can be confidently used by itself to improve

streamflow estimation with HL-RDHM.
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